Abstract
Excessive copper pollutes the environment and endangers human health, attracting plenty of global attention. In this study, a novel strain named Bacillus coagulans XY2 was discovered to have a great copper tolerance and adsorption capacity. B. coagulans XY2 might maintain copper homeostasis through multisystem synergies of copper resistance, sulfur metabolism, Fe-S cluster assembly, and siderophore transport. In mice, by promoting the expression of SREBF-1 and SREBF-2 and their downstream genes, B. coagulans XY2 significantly inhibited the copper-induced decrease in weight growth rate, ameliorated dyslipidemia, restored total cholesterol and triglyceride contents both in serum and liver. Furthermore, B. coagulans XY2 recovered the diversity of gut microbiota and suppressed the copper-induced reduction in the ratio of Firmicutes to Bacteroidota. Serum metabolomics analysis showed that the alleviating effect of B. coagulans XY2 on copper toxicity was mainly related to lipid metabolism. For the first time, we demonstrated mechanisms of copper toxicity mitigation by B. coagulans XY2, which was related to self-adsorption, host copper excretion promotion, and lipid metabolism regulation. Moreover, working model of B. coagulans XY2 on copper homeostasis was predicted by whole-genome analysis. Our study provides a new solution for harmfulness caused by copper both in human health and the environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.