Abstract

Bladder instillation of bacillus Calmette-Guerin (BCG) is effective therapy for recurrent superficial bladder cancer and carcinoma in situ. BCG induces nitric oxide synthase activity in the bladder. Nitric oxide is formed from L-arginine by nitric oxide synthase. We investigated nitric oxide formation and its localization in bladder cancer patients treated with intravesical BCG instillation. The L-citrulline conversion assay was done to assess nitric oxide synthase activity in BCG treated T24 human bladder cancer cells and cultured normal human urothelial cells. Nitrite and nitrate in cell culture medium, urine and plasma were measured by capillary electrophoresis. Nitric oxide formation in the bladder was measured by chemiluminescence. A 24-hour treatment with BCG induced calcium independent nitric oxide synthase activity in T24 cells in a dose dependent manner. Nitrite and nitrate production by T24 cells also increased in a dose dependent manner after 24-hour BCG treatment. BCG treatment of cultured normal human urothelial cells resulted in the induction of calcium dependent and independent nitric oxide synthase activity. Nitrite in the urine of patients receiving BCG for the first time was increased 5-fold 24 hours after instillation. Furthermore, BCG increased luminal nitric oxide in the bladder. The increase was noted after a single treatment and sustained for 6 months. No changes in plasma nitrite or nitrate were observed after BCG treatment. BCG induces the local formation of nitric oxide in the bladder, whereas no evidence for systemic nitric oxide formation was noted. Increased nitric oxide production in the bladder is likely due to the induction of nitric oxide synthase activity in urothelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.