Abstract
A numerical method for solving Abel's integral equation as singular Volterra integral equations is presented. The method is based upon Bernstein polynomial (B-polynomial) multiwavelet basis approximations. The properties of B-polynomial multiwavelets are first presented. These properties are then utilized to reduce the singular Volterra integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have