Abstract

Type I IFN is essential for viral clearance but also contributes to the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), via aberrant nucleic acid-sensing pathways, leading to autoantibody production. Type III IFN (IFN-λ) is now appreciated to have a nonredundant role in viral infection, but few studies have addressed the effects of IFN-λ on immune cells given the more restricted expression of its receptor primarily to the epithelium. In this study, we demonstrate that B cells display a prominent IFN gene expression profile in patients with lupus. Serum levels of IFN-λ are elevated in SLE and positively correlate with B cell subsets associated with autoimmune plasma cell development, including CD11c+T-bet+CD21- B cells. Although B cell subsets express all IFN receptors, IFNLR1 strongly correlates with the CD11c+CD21- B cell expansion, suggesting that IFN-λ may be an unappreciated driver of the SLE IFN signature and B cell abnormalities. We show that IFN-λ potentiates gene transcription in human B cells typically attributed to type I IFN as well as expansion of T-bet-expressing B cells after BCR and TLR7/8 stimulation. Further, IFN-λ promotes TLR7/8-mediated plasmablast differentiation and increased IgM production. CD11c+ B cells demonstrate IFN-λ hyperresponsive signaling compared with other B cell subsets, suggesting that IFN-λ accelerates plasma cell differentiation through this putative extrafollicular pathway. In summary, our data support type III IFN-λ as a cytokine promoting the Ab-secreting cell pool in human viral and autoimmune disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call