Abstract

BackgroundA single risk haplotype across UBE2L3 is strongly associated with systemic lupus erythematosus (SLE) and many other autoimmune diseases. UBE2L3 is an E2 ubiquitin-conjugating enzyme with specificity for RING-in-between-RING E3 ligases, including HOIL-1 and HOIP, components of the linear ubiquitin chain assembly complex (LUBAC), which has a pivotal role in inflammation, through crucial regulation of NF-κB. We aimed to determine whether UBE2L3 regulates LUBAC-mediated activation of NF-κB, and determine the effect of UBE2L3 genotype on NF-κB activation and B-cell differentiation. MethodsUBE2L3 genotype data from SLE genome-wide association studies was imputed by use of 1000 Genomes data. UBE2L3 function was studied in a HEK293-NF-κB reporter cell line with standard molecular biology techniques. p65 NF-κB translocation in ex-vivo B cells and monocytes from genotyped healthy individuals was quantified by imaging flow cytometry. B-cell subsets from healthy individuals and patients with SLE, stratified by UBE2L3 genotype, were determined by multicolour flow cytometry. Findingsrs140490, located at −270 base pairs of the UBE2L3 promoter, was identified as the most strongly associated single nucleotide polymorphism (p=8·6 × 10−14, odds ratio 1·30, 95% CI 1·21–1·39). The rs140490 risk allele increased UBE2L3 expression in B cells and monocytes. Marked upregulation of NF-κB was observed with combined overexpression of UBE2L3 and LUBAC, but abolished by dominant-negative mutant UBE2L3 (C86S), or UBE2L3 silencing. The rs140490 genotype correlated with basal NF-κB activation in ex-vivo human B cells and monocytes, as well as NF-κB sensitivity to CD40 or tumour necrosis factor (TNF) stimulation. UBE2L3 expression was 3–4 times higher in circulating plasmablasts and plasma cells than in other B-cell subsets, with higher levels in patients with SLE than in controls. The rs140490 genotype correlated with increasing plasmablast and plasma cell differentiation in patients with SLE. InterpretationThis study shows that NF-κB activation mediated by LUBAC is exquisitely sensitive to the expression level of UBE2L3. The UBE2L3 risk haplotype is correlated with TNF and CD40 induced NF-κB activation in primary human cells, and with plasmablast and plasma cell expansion in SLE, consistent with the dependence of these cells on NF-κB as a survival factor. Since UBE2L3 is highly expressed in plasma cells, UBE2L3 could be a novel therapeutic target in SLE. FundingArthritis Research UK, Wellcome Trust, George Koukis Foundation, European Community's Seventh Framework Programme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call