Abstract

The fungal pathogen Aspergillus fumigatus causes serious illness and often death when it invades tissues, especially in immunocompromised individuals. The azole class of drugs is the most commonly prescribed treatment for many fungal infections and acts on the ergosterol biosynthesis pathway. One common mechanism of acquired azole drug resistance in fungi is the prevention of drug accumulation to toxic levels in the cell. While drug efflux is a well-known resistance strategy, reduced azole import would be another strategy to maintain low intracellular azole levels. Recently, azole uptake in Candida albicans and other yeasts was analyzed using [(3)H]fluconazole. Defective drug import was suggested to be a potential mechanism of drug resistance in several pathogenic fungi, including Cryptococcus neoformans, Candida krusei, and Saccharomyces cerevisiae. We have adapted and developed an assay to measure azole accumulation in A. fumigatus using radioactively labeled azole drugs, based on previous work done with C. albicans. We used this assay to study the differences in azole uptake in A. fumigatus isolates under a variety of drug treatment conditions, with different morphologies and with a select mutant strain with deficiencies in the sterol uptake and biosynthesis pathway. We conclude that azole drugs are specifically selected and imported into the fungal cell by a pH- and ATP-independent facilitated diffusion mechanism, not by passive diffusion. This method of drug transport is likely to be conserved across most fungal species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call