Abstract
Candida infections pose a serious public health threat due to increasing drug resistance. Azoles are first-line antifungal drugs for fungal infections. In this study, we tested an in-house azole collection incorporating naphthalene ring to find hits against planktonic and biofilm forms of resistant Candida spp. In the collection, potent derivatives were identified against the susceptible strains of Candida with minimum inhibitory concentration (MIC) values lower than those of the reference drug, fluconazole. MIC values of 0.125 μg/ml against C. albicans, 0.0625 μg/ml against C. parapsilosis, and 2 μg/ml against C. krusei, an intrinsically azole-resistant non-albicans Candida, were obtained. Some of the derivatives were highly active against fluconazole-resistant clinical isolate of C. tropicalis. Inhibition of C. albicans biofilms was also observed at 4 μg/ml similar as amphotericin B, the reference drug known for its antibiofilm activity. Through molecular docking studies, affinities and key interactions of the compounds with fungal lanosterol 14α-demethylase (CYP51), the target enzyme of azoles, were predicted. The interactions of imidazole with heme cofactor and of the naphthalene with Tyr118 were highlighted in line with the literature data. As a result, this study proves the importance of naphthalene for the antifungal activity of azoles against Candida spp. in both planktonic and biofilm forms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have