Abstract
The interaction between a solid and water at their interface, especially proton transfer, impacts molecular-scale catalysis, macroscopic environmental science, and geoscience. Although being highly desired, directly probing proton transfer between a solid and water is a great challenge, given the subnanometer to nanometer scale of the interface. The fundamental challenge lies in the lack of a measurement tool to sensitively observe local proton concentration without introducing an exogenous electrode or nanoparticle with a minimum size of tens of nanometers. Here, we demonstrate an azo-enhanced Raman scattering strategy to design a 2 nm long small-molecule pH probe with a chelating group anchoring to the solid surface. Empowered by the intramolecular Raman enhancing sensitivity, the probe directly observes proton transfer between water and nanoscale zero-valent iron (nZVI), a famous environmental material for pollution control. This molecular-scale interfacial probing methodology offers a powerful tool to pave the way for advanced environmental and geochemical discernment and management.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.