Abstract
Based on the long-wavelength approximation, a set of parallel vertical fractures embedded in periodic thin interbeds can be regarded as an equivalent orthorhombic medium. Rock physics is the basis for constructing the relationship between fracture parameters and seismic response. Seismic scattering is an effective way to inverse anisotropic parameters. In this study, we propose a reliable method for predicting the Thomsen’s weak anisotropic parameters and fracture weaknesses in an orthorhombic fractured reservoir using azimuthal pre-stack seismic data. First, considering the influence of fluid substitution in mineral matrix, porosity, fractures and anisotropic rocks, we estimate the orthorhombic anisotropic stiffness coefficients by constructing an equivalent rock physics model for fractured rocks. Further, we predict the logging elastic parameters, Thomsen’s weak parameters, and fracture weaknesses to provide the initial model constraints for the seismic inversion. Then, we derive the P -wave reflection coefficient equation for the inversion of Thomsen’s weak anisotropic parameters and fracture weaknesses. Cauchy-sparse and smoothing-model constraint regularization taken into account in a Bayesian framework, we finally develop a method of amplitude variation with angles of incidence and azimuth (AVAZ) inversion for Thomsen’s weak anisotropic parameters and fracture weaknesses, and the model parameters are estimated by using the nonlinear iteratively reweighted least squares (IRLS) strategy. Both synthetic and real examples show that the method can directly estimate the orthorhombic characteristic parameters from the azimuthally pre-stack seismic data, which provides a reliable seismic inversion method for predicting Thomsen’s weak anisotropic parameters and fracture weaknesses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have