Abstract

Abstract 2-Amino-2-deoxy-pyranosyl units are important structural components of cell-wall polymers in prokaryotes, fungi and mammals. With respect to the need for development of novel and efficient vaccines and tools for serodiagnosis of infectious diseases, of particular interest are the oligosaccharide cell-wall antigens of pathogenic bacteria and fungi, which comprise 2-amino-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-galactopyranose units as α- or β-anomers. Synthesis of N-acylated α-GlcN and α-GalN containing oligosaccharides is a special challenge due to the presence of a participating group at C2 which favors the formation of β- rather than α-glycoside bond. Herein we overview the efficient two-step approach for preparation of 1,2-cis-glycosides of 2-amino-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-galactopyranose, which was recently developed in our laboratory. In the first step, an efficient and straightforward azidophenylselenylation procedure of glycals gives phenyl 2-azido-2-deoxy-1-selenoglycosides as versatile glycosyl donors. In the second step, these donors can be efficiently transformed into α- or β-glycosides depending on the choice of the solvent. In acetonitrile, total β-stereocontrol was achieved, and the use of diethyl ether as a solvent favouring α-stereoselectivity of glycosylations with phenyl 2-azido-2-deoxy-1-selenoglycosides. Besides, it was shown, that low reactivity and nucleophilicity of glycosyl acceptors which are glycosylated with phenyl 2-azido-2-deoxy-1-selenogalactosides facilitated the formation of α-GalN derivatives. To date, homogenous azidophenylselenylation of glycals and glycosylation with phenyl 2-azido-2-deoxy-1-seleno-α-D-glycopyranosides can be regarded as most useful tool for introduction of 2-amino-2-deoxy-D-glycopyranoside residues into complex synthetic oligosaccharides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call