Abstract
Abstract: Following intraocular injection of [3H]fucose in the rat, radioactive glycoproteins are rapidly transported to the nerve terminals in at least two waves, one with a peak at 8 h and a second with a peak at about a week. The molecular weight distribution of radioactive peptides in ach transport wave as determined by gel electrophoresis in buffers containing sodium dodecyl sulfate is very similar. Most of the many glycopeptides in the first wave of rapid transport pass through the optic tract in unison (apparent half‐life of about 15 h) and are preferentially destined for the nerve endings. However, two proteins of apparent M. W. 28,000 and 49,000 are preferentially retained in the axons. The remaining proteins, after reaching the nerve endings (superior colliculus), decay with apparent half‐lives ranging from 17 to 34 h. During the second wave a large amount of the 28,000 and 49,000 M. W. peptides are again preferentially retained in the axons. The remaining proteins, on reaching the nerve endings, decay with apparent half‐lives ranging from 5 to 9 days. Subcellular fractionation of the superior colliculus supports the hypothesis that the 49,000 and 28,000 M. W. peptides are the predominantly labeled glycoproteins present in myelinated axons (representing over 50% of the radioactive glycoproteins 7 days following injection), although they are probably also present in membranes of the nerve endings. A comparison with glycoprotein transport in other tracts (geniculocortical and nigrostriatal tracts) suggests that glycoprotein transport in these pathways has many similarities to glycoprotein transport in the retinal ganglion cells, and that the optic system is a good general model for axonal transport in the CNS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.