Abstract

We have investigated the metabolic turnover of axonally transported phospholipids in myelinated axons (optic tract) and nerve endings (superior colliculus) of retinal ganglion cells. One week following intraocular injection of [2-3H]glycerol, turnover rates for individual phospholipid classes in the retina (which contains a number of other cell types in addition to the ganglion cells) were all very similar to each other, with apparent half-lives of approximately 7 days. Apparent half-lives of labeled phospholipids in superior colliculus (presumably primarily in retinal ganglion cell nerve endings) were 10 days for both choline and inositol phosphoglycerides and 13 days for both serine and diacylethanolamine phosphoglycerides. Subcellular fractionation data obtained from superior colliculus at various times after injection suggested that apparent turnover rates determined for nerve ending phospholipids probably were not significantly affected by transfer of axonally transported 3H lipids into myelin. Apparent half-lives for phospholipids in optic tract were somewhat longer than in superior colliculus, ranging from 11 to 18 days. The slower turnover rates in optic tract may, in part, reflect the transfer of some axonal lipids to the more metabolically stable pool of lipids in the myelin ensheathing the retinal ganglion cell axons. In both optic tract and superior colliculus, apparent half-lives for axonally transported phospholipids labeled with [32P]phosphate were only slightly longer than for [2-3H]glycerol, while those for [14C]choline and [3H]acetate were markedly longer, indicating differing degrees of metabolic conservation or reutilization of these precursors relative to glycerol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.