Abstract
Retinal ganglion cells in fish and amphibians regenerate their axons after transection of the optic nerve. Fiber tracing studies during the third month of regeneration show that the axons have reestablished a basically normal fiber order in the two brachia of the optic tract; axons originating in the ventral hemiretina are concentrated in the dorsal brachium, axons from the dorsal hemiretina in the ventral brachium. Attardi and Sperry (Exp. Neurol. 7:46-64, 1963) first suggested that the reestablishment of the fiber order reflects path-finding by the regenerating axons. Recently, however, Becker and Cook (Development 101:323-337, 1987) have claimed that the fiber order observed at later stages of regeneration is due to secondary axonal rearrangements and that the initial brachial choice is random. In order to evaluate whether regenerating axons are capable of navigating in the optic tract and brachia and on the tectum, the present study examined the pathway choices and the morphology of regenerating axons en route to their tectal targets in goldfish. Subsets of axons were labeled at various time intervals (2 to 30 days) following an optic nerve crush, by intraretinal application of the lipophilic fluorescent tracer 1,1-dioctadecyl-3-3-3'-3'-tetramethylcarbocyanine (DiI). After a survival time of 18 to 72 hours (to allow for diffusion of DiI along the axons), the experimental animals were perfused with fixative and their right and left optic pathways (nerve, tract, and tectum) were dissected free and separated at the chiasm. Fluorescently labeled axons were traced in whole-mounted pathways. Pathway choices were examined at the brachial bifurcation where axons from ventral and dorsal hemiretinae normally segregate. DiI was found to label axons reliably up to their growth cones, even at the earliest stages of regrowth. The pathway choices of the axons were nonrandom. The majority of the ventral axons reached the appropriate, dorsal hemitectum through the appropriate dorsal brachium of the tract. Dorsal axons reached the ventral hemitectum mainly through the ventral brachium. This suggests the presence of specific guidance cues, accessible to the regenerating axons. Differences in the complexity of the growth cones of the regenerating axons (simple in the nerve and tectal fiber layer, complex in the tract and the synaptic layer of the tectum) provide further evidence for specific interactions between the regenerating axons and their substrates along the pathway. These results argue that regenerating retinal axons in fish are capable of axonal path-finding.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.