Abstract

In order to investigate whether a fibrin-fibronectin-containing matrix of a peripheral regeneration chamber could promote the growth of central nervous system neurons, hippocampal and septal slices were co-cultured in the presence of this acellular substrate. In introducing the peripheral matrix into a 2-mm-long tube between hippocampal and septal slices, a spatio-temporal sequence of cell migration and axonal growth was described by light and electron microscopy. Axons were able to elongate directly into the flocculent material constituting the matrix and a possible neurite-promoting activity was implicated in this process as axonal growth was not detected in direct contact with rat plasma coagulated with calcium, or chicken plasma coagulated with thrombin, used as control matrices. However, in the 3 different substrates tested, astrocytes were able to migrate and dilated astroglial processes containing intermediate filaments were detected. Axonal processes were observed growing on the glial cell surface. GFAP-positive phagocytic cells, that could be of the same origin as astrocytes, were involved in matrix removing. Neuronal growth and glial migration arose from hippocampal and septum slices and acetylcholinesterase-containing fibers were seen in the bridging structure suggesting that cholinergic axons were able to progress to the hippocampal slice. This technique appeared to provide a model in which axonal growth and cell migration can be studied ‘in vitro’ in a 3-dimensional environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.