Abstract

Axonal transsynaptic signaling between presynaptic neurexin (NX) and postsynaptic neuroligin (NL) is essential for many properties of synaptic connectivity. Here, we demonstrate the existence of a parallel axo-glial signaling pathway between axonal NX and oligodendritic (OL) NL3. We show that this pathway contributes to the regulation of myelinogenesis, the maintenance of established myelination, and the differentiation state of the OL using in vitro models. We first confirm that NL3 mRNA and protein are expressed in OLs and in OL precursors. We then show that OLs in culture form contacts with non-neuronal cells exogenously expressing NL3's binding partners NX1α or NX1β. Conversely, blocking axo-glial NX-NL3 signaling by saturating NX with exogenous soluble NL protein (NL-ECD) disrupts interactions between OLs and axons in both in vitro and ex vivo assays. Myelination by OLs is tied to their differentiation state, and we find that blocking NX-NL signaling with soluble NL protein also caused OL differentiation to stall at an immature stage. Moreover, in vitro knockdown of NL3 in OLs with siRNAs stalls their development and reduces branching complexity. Interestingly, inclusion of an autism related mutation in the NL blocking protein attenuates these effects; OLs differentiate and the dynamics of OL-axon signaling occur normally as this peptide does not disrupt NX-NL3 axo-glial interactions. Our findings provide evidence not only for a new pathway in axo-glial communication, they also potentially explain the correlation between altered white matter and autism. GLIA 2015;63:2023-2039.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.