Abstract

BackgroundGonadotropin-releasing hormone (GnRH) receptors are essential for reproduction and are expressed in numerous urogenital, reproductive, and non-reproductive cancers. In addition to canonical G protein-coupled receptor signaling, GnRH receptors functionally interact with several receptor tyrosine kinases. AXL is a receptor tyrosine kinase expressed in numerous tissues as well as multiple tumors. Here we tested the hypothesis that AXL, along with its endogenous ligand Gas6, impacts GnRH receptor signaling.MethodsWe used clonal murine pituitary αT3-1 and LβT2 gonadotrope cell lines to examine the effect of AXL activation on GnRH receptor-dependent signaling outcomes. ELISA and immunofluorescence were used to observe AXL and GnRH receptor expression in αT3-1 and LβT2 cells, as well as in murine and human pituitary sections. We also used ELISA to measure changes in ERK phosphorylation, pro-MMP9 production, and release of LHβ. Digital droplet PCR was used to measure the abundance of Egr-1 transcripts. A transwell migration assay was used to measure αT3-1 and LβT2 migration responses to GnRH and AXL.ResultsWe observed AXL, along with the GnRH receptor, expression in αT3-1 and LβT2 gonadotrope cell lines, as well as in murine and human pituitary sections. Consistent with a potentiating role of AXL, Gas6 enhanced GnRH-dependent ERK phosphorylation in αT3-1 and LβT2 cells. Further, and consistent with enhanced post-transcriptional GnRH receptor responses, we found that Gas6 increased the abundance of Egr-1 transcripts. Suggesting functional significance, in LβT2 cells, Gas6/AXL signaling stimulated LHβ production and enhanced GnRH receptor-dependent generation of pro-MMP9 protein and promoted cell migration.ConclusionsAltogether, these data describe a novel role for AXL as a modulator of GnRH receptor signaling.5LYCavpivq5eiBQqEyV1BjVideo

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.