Abstract

We explore some experimentally testable predictions of an SO(10) axion model which includes two 10-plets of fermions in order to resolve the axion domain wall problem. The axion symmetry can be safely broken after inflation, so that the isocurvature perturbations associated with the axion field are negligibly small. An unbroken gauge Z_2 symmetry in SO(10) ensures the presence of a stable WIMP-like dark matter, a linear combination of the electroweak doublets in the fermion 10-plets and an SO(10) singlet fermion with mass sim 62.5 ; textrm{GeV}; (1 ; textrm{TeV}) when it is mostly the singlet (doublet) fermion, that co-exists with axion dark matter. We also discuss gauge coupling unification, proton decay, inflation with non-minimal coupling to gravity and leptogenesis. With the identification of the SM singlet Higgs field in the 126 representation of SO(10) as inflaton, the magnetic monopoles are inflated away, and we find 0.963 lesssim n_s lesssim 0.965 and 0.003 lesssim r lesssim 0.036, where n_s and r denote the scalar spectral index and tensor-to-scalar ratio, respectively. These predictions can be tested in future experiments such as CMB-S4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.