Abstract
The default assumption of early universe cosmology is that the postinflationary universe was radiation dominated until it was about 47000 years old. Direct evidence for the radiation dominated epoch extends back until nucleosynthesis, which began during the first second. However there are theoretical reasons to prefer a period of earlier matter domination, prior to nucleosynthesis, e.g. due to late decaying massive particles needed to explain baryogenesis. Axion cosmology is quantitatively affected by an early period of matter domination, with a different axion mass range preferred and greater inhomogeneity produced on small scales. In this work we show that such increased inhomogeneity can lead to the formation of axion miniclusters in axion parameter ranges that are different from those usually assumed. If the reheating temperature is below $58$ MeV, axion miniclusters can form even if the axion field is present during inflation and has been previously homogenized. The upper bound on the typical initial axion minicluster mass is raised from $10^{-10} M_{\odot}$ to $10^{-7} M_{\odot}$, where $M_{\odot}$ is a solar mass. These results may have consequences for indirect detection of axion miniclusters, and could conceivably probe the thermal history of the universe before nucleosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.