Abstract

During development, scaffold proteins serve as important platforms for orchestrating signaling complexes to transduce extracellular stimuli into intracellular responses that regulate dendritic spine morphology and function. Axin (“axis inhibitor”) is a key scaffold protein in canonical Wnt signaling that interacts with specific synaptic proteins. However, the cellular functions of these protein–protein interactions in dendritic spine morphology and synaptic regulation are unclear. Here, we report that Axin protein is enriched in synaptic fractions, colocalizes with the postsynaptic marker PSD-95 in cultured hippocampal neurons, and interacts with a signaling protein Ca2+/calmodulin-dependent protein kinase II (CaMKII) in synaptosomal fractions. Axin depletion by shRNA in cultured neurons or intact hippocampal CA1 regions significantly reduced dendritic spine density. Intriguingly, the defective dendritic spine morphogenesis in Axin-knockdown neurons could be restored by overexpression of the small Rho-GTPase Cdc42, whose activity is regulated by CaMKII. Moreover, pharmacological stabilization of Axin resulted in increased dendritic spine number and spontaneous neurotransmission, while Axin stabilization in hippocampal neurons reduced the elimination of dendritic spines. Taken together, our findings suggest that Axin promotes dendritic spine stabilization through Cdc42-dependent cytoskeletal reorganization.

Highlights

  • Cognitive functions are believed to be encoded by a plethora of biological processes within neurons, such as the structural changes of dendritic spines harboring the postsynaptic apparatus of excitatory synapse, enrichment of synaptic components, and electrochemical transmission across synapses

  • Axin was strongly expressed in cell soma and dendrites, and Axin puncta along the dendrites were colocalized with postsynaptic density-95 (PSD-95) (Fig 1A)

  • The present study demonstrates that Axin, a key scaffolding protein, is essential for dendritic spine morphogenesis by orchestrating the intracellular signaling complex, leading to cytoskeletal reorganization

Read more

Summary

Introduction

Cognitive functions are believed to be encoded by a plethora of biological processes within neurons, such as the structural changes of dendritic spines harboring the postsynaptic apparatus of excitatory synapse, enrichment of synaptic components, and electrochemical transmission across synapses. The tight control and proper coordination of the signaling events underlying these processes are critical for learning and memory. Aberrant activation or inhibition of synaptic signaling is associated with various neurological disorders [1]. Axin Is Essential for Dendritic Spine Morphogenesis

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call