Abstract

The reaction of a substituted allylmetal with a prostereogenic carbonyl compound can give rise to up to two racemic diastereomers (syn and anti). Classically, in such reactions, when pure E-isomers have afforded anti-selectivity and the Z-isomers exhibit syn-selectivity, researchers have used the empirical Zimmerman-Traxler model. In this model, chair-like transition states dominate over boat-like arrangements. The incoming aldehyde alkyl (aryl) residue occupies a pseudoequatorial rather than a pseudoaxial position to avoid potential 1,3-diaxial steric interactions. However, the reaction of γ,γ-disubstituted allylzinc species with carbonyl compounds generates two gauche interactions, which may result in a completely different stereochemical outcome. With these two gauche interactions, would a transition state in which the aldehyde substituent occupies a pseudoequatorial position or a pseudoaxial position be preferred? In this Account, we show that reaction of γ,γ-disubstituted allylzinc species with carbonyl compounds proceeds through a chair-like transition state and the substituent of the incoming aldehyde residue prefers to occupy a pseudoaxial position to avoid these two gauche interactions. Theoretical calculations on model systems support our experimental results. We have extended this new stereochemical outcome to describe the formation of α-alkoxyallylation of aldehydes through the formation of the rather uncommon (E)-γ,γ-disubstituted alkoxyallylzinc species. We also used this method to transform aromatic ketones and α-alkoxyaldehydes and ketones into functionalized adducts. In a one-pot reaction and using simple alkynes, three new carbon-carbon bonds and two to three stereogenic centers, including an all-carbon quaternary stereocenter could be created in acyclic systems. Because 1,3-diaxial interactions are now produced with the axial substituent, an increase in the substituent size on the zinc atom decreases the diastereoselectivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call