Abstract
In this paper, we apply Nevanlinna theory to prove two Ax–Schanuel type theorems for functional transcendence when the original exponential map is replaced by other meromorphic functions. We give examples to show that these results are optimal. As a byproduct, we also show that analytic dependence implies algebraic dependence for certain classes of entire functions. Finally, some links to transcendental number theory and geometric Ax–Schanuel theorem will be discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have