Abstract

A distributed model of a drill string with a collars section is presented with Coulomb friction as a distributed source term. This model is capable of replicating stick slip oscillations as caused by the reduction in friction from static to dynamic. We design a feed-forward startup trajectory for initiating rotation of the drill string that effectively avoids the stick slip limit cycle. The trajectory design is performed using the differential flatness of the bit angular velocity, and by treating the reduction from static to dynamic friction as an estimated disturbance to be canceled, thus conforming to the canonical 3-DOF controller design for tracking and disturbance rejection. A simulation study illustrates the feasibility of the approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.