Abstract

Existing theoretical works differ on whether three-dimensional Dirac and Weyl semimetals are stable to a short-range-correlated random potential. Numerical evidence suggests the semimetal to be unstable, while some field-theoretic instanton calculations have found it to be stable. The differences go beyond method: the continuum field-theoretic works use a single, perfectly linear Weyl cone, while numerical works use tight-binding lattice models which inherently have band curvature and multiple Weyl cones. In this work, we bridge this gap by performing exact numerics on the same model used in analytic treatments, and we find that all phenomena associated with rare regions near the Weyl node energy found in lattice models persist in the continuum theory: The density of states is non-zero and exhibits an avoided transition. In addition to characterizing this transition, we find rare states and show that they have the expected behavior. The simulations utilize sparse matrix techniques with formally dense matrices; doing so allows us to reach Hilbert space sizes upwards of $10^7$ states, substantially larger than anything achieved before.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.