Abstract

Graphs and Algorithms The irredundant Ramsey number s - s(m, n) [upper domination Ramsey number u - u(m, n), respectively] is the smallest natural number s [u, respectively] such that in any red-blue edge colouring (R, B) of the complete graph of order s [u, respectively], it holds that IR(B) \textgreater= m or IR(R) \textgreater= n [Gamma (B) \textgreater= m or Gamma(R) \textgreater= n, respectively], where Gamma and IR denote respectively the upper domination number and the irredundance number of a graph. Furthermore, the mixed irredundant Ramsey number t = t(m, n) [mixed domination Ramsey number v = v(m, n), respectively] is the smallest natural number t [v, respectively] such that in any red-blue edge colouring (R, B) of the complete graph of order t [v, respectively], it holds that IR(B) \textgreater= m or beta(R) \textgreater= n [Gamma(B) \textgreater= m or beta(R) \textgreater= n, respectively], where beta denotes the independent domination number of a graph. These four classes of non-classical Ramsey numbers have previously been studied in the literature. In this paper we introduce a new Ramsey number w = w(m, n), called the irredundant-domination Ramsey number, which is the smallest natural number w such that in any red-blue edge colouring (R, B) of the complete graph of order w, it holds that IR(B) \textgreater= m or Gamma(R) \textgreater= n. A computer search is employed to determine complete sets of avoidance colourings of small order for these five classes of nonclassical Ramsey numbers. In the process the fifteen previously unknown Ramsey numbers t(4, 4) = 14, t(6, 3) = 17, u(4, 4) = 13, v(4, 3) = 8, v(4, 4) = 14, v(5, 3) = 13, v(6, 3) = 17, w(3, 3) = 6, w(3, 4) = w(4, 3) = 8, w(4, 4) = 13, w(3, 5) = w(5, 3) = 12 and w(3, 6) = w(6, 3) = 15 are established.

Highlights

  • A bi-colouring of the edges of a graph, using the colours red and blue, is called a red-blue edge colouring of the graph

  • The irredundant Ramsey number s = s(m, n) [upper domination Ramsey number u = u(m, n), respectively] is the smallest natural number s [u, respectively] such that in any red-blue edge colouring (R, B) of the complete graph of order s [u, respectively], it holds that IR(B) ≥ m or IR(R) ≥ n [Γ(B) ≥ m or Γ(R) ≥ n, respectively], where Γ and IR denote respectively the upper domination number and the irredundance number of a graph

  • In this paper we introduce a new Ramsey number w = w(m, n), called the irredundant-domination Ramsey number, which is the smallest natural number w such that in any red-blue edge colouring (R, B) of the complete graph of order w, it holds that IR(B) ≥ m or Γ(R) ≥ n

Read more

Summary

Avoidance colourings for small nonclassical Ramsey numbers

To cite this version: Alewyn Petrus Burger, Jan H. Avoidance colourings for small nonclassical Ramsey numbers. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2011, Vol 13 no. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés

AP Burger and JH van Vuuren
Introduction
Computing avoidance colourings from the classical case
Conclusion
Extremal avoidance colourings
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call