Abstract

The migratory orientation of juvenile white-crowned sparrows, Zonotrichia leucophrys gambelli, was investigated by orientation cage experiments in manipulated magnetic fields performed during the evening twilight period in northwestern Canada in autumn. We did the experiments under natural clear skies in three magnetic treatments: (1) in the local geomagnetic field; (2) in a deflected magnetic field (mN shifted −90°); and (3) after exposure to a deflected magnetic field (mN −90°) for 1h before the cage experiment performed in the local geomagnetic field at dusk. Subjects showed a mean orientation towards geographical east in the local geomagnetic field, north of the expected migratory direction towards southeast. The sparrows responded consistently to the shifted magnetic field, demonstrating the use of a magnetic compass during their first autumn migration. Birds exposed to a cue conflict for 1h on the same day before the experiment, and tested in the local geomagnetic field at sunset, showed the same northerly orientation as birds exposed to a shifted magnetic field during the experiment. This result indicates that information transfer occurred between magnetic and celestial cues. Thus, the birds' orientation shifted relative to available sunset and geomagnetic cues during the experimental hour. The mean orientation of birds exposed to deflected magnetic fields prior to and during testing was recorded up to two more times in the local geomagnetic field under natural clear and overcast skies before release, resulting in scattered mean orientations.Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.