Abstract
Influenza A H5N1 hemagglutinin (HA) plays a crucial role in viral pathogenesis and changes in the HA receptor binding domain (RBD) have been attributed to alterations in viral pathogenesis. Mutations often occur within the HA which in-turn results in HA structural changes that consequently contribute to protein evolution. However, the possible occurrence of mutations that results to reversion of the HA protein (going back to an ancestral protein conformation) which in-turn creates distinct HA structural patterns across the 1959–2023 H5N1 viral evolution has never been investigated. Here, we generated and verified the quality of the HA models, identified similar HA structural patterns, and elucidated the possible variations in HA RBD structural dynamics. Our results show that there are 7 distinct structural patterns occurring among the 1959–2023 H5N1 HA models which suggests that reversion of the HA protein putatively occurs during viral evolution. Similarly, we found that the HA RBD structural dynamics vary among the 7 distinct structural patterns possibly affecting viral pathogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.