Abstract
This paper is devoted to studying the averaging principle for a fast-slow system of rough differential equations driven by mixed fractional Brownian rough path. The fast component is driven by Brownian motion, while the slow component is driven by fractional Brownian motion with Hurst index H(1/3<H≤1/2). Combining the fractional calculus approach to rough path theory and Khasminskii's classical time discretization method, we prove that the slow component strongly converges to the solution of the corresponding averaged equation in the L1-sense. The averaging principle for a fast-slow system in the framework of rough path theory seems new.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.