Abstract

Populations of uncoupled limit-cycle oscillators receiving common random impulses show various types of phase-coherent states, which are characterized by the distribution of phase differences between pairs of oscillators. We develop a theory to predict the stationary distribution of pairwise phase differences from the phase response curve, which quantitatively encapsulates the oscillator dynamics, via averaging of the Frobenius-Perron equation describing the impulse-driven oscillators. The validity of our theory is confirmed by direct numerical simulations using the FitzHugh-Nagumo neural oscillator receiving common Poisson impulses as an example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.