Abstract
We present a model for edge updates with restricted randomness in dynamic graph algorithms and a general technique for analyzing the expected running time of an update operation. This model is able to capture the average case in many applications, since (1) it allows restrictions on the set of edges which can be used for insertions and (2) the type (insertion or deletion) of each update operation is arbitrary, i.e., not random. We use our technique to analyze existing and new dynamic algorithms for the following problems: maximum cardinality matching, minimum spanning forest, connectivity, 2-edge connectivity, k -edge connectivity, k -vertex connectivity, and bipartiteness. Given a random graph G with m 0 edges and n vertices and a sequence of l update operations such that the graph contains m i edges after operation i , the expected time for performing the updates for any l is $O(l log n + \sum_{i=1}^{l} n/\sqrt m_i)$ in the case of minimum spanning forests, connectivity, 2-edge connectivity, and bipartiteness. The expected time per update operation is O(n) in the case of maximum matching. We also give improved bounds for k -edge and k -vertex connectivity. Additionally we give an insertions-only algorithm for maximum cardinality matching with worst-case O(n) amortized time per insertion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.