Abstract
This paper deals with the average expected reward criterion for continuous-time Markov decision processes in general state and action spaces. The transition rates of underlying continuous-time jump Markov processes are allowed to be unbounded, and the reward rates may have neither upper nor lower bounds. We give conditions on the system's primitive data and under which we prove the existence of the average reward optimality equation and an average optimal stationary policy. Also, under our conditions we ensure the existence of ϵ-average optimal stationary policies. Moreover, we study some properties of average optimal stationary policies. We not only establish another average optimality equation on an average optimal stationary policy, but also present an interesting “martingale characterization” of such a policy. The approach provided in this paper is based on the policy iteration algorithm. It should be noted that our way is rather different from both the usually “vanishing discounting factor approach” and the “optimality inequality approach” widely used in the previous literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.