Abstract

Average enhancement factor (AEF) of a coreshell (Ag@SiO(2)) on the fluorescence of molecules doped within the silica shell is proposed and studied to estimate the overall performance of a large number of coreshells. Using Mie theory and dyadic Green's functions, the enhancement factor (EF) of a coreshell is first calculated for any arbitrarily oriented and located electric dipole embedded in the shell. AEF is then obtained by averaging the individual EF over all possible orientations and positions of the electric dipoles. AEF of a FITC-doped coreshell (radius of Ag core: 25 nm, thickness of shell: 15 nm) irradiated by a laser of 488 nm for FITC's emission at 518 nm is 2.406. It is much smaller than the maximum EF (30.114) of a coreshell containing a single molecule with a radial orientation at its optimal position. For Alexa 430-doped coreshell excited at 428 nm, AEF is 12.34 at the emission of 538 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.