Abstract

The dark matter halo sparsity provides a direct observational proxy of the halo mass profile, characterizing halos in terms of the ratio of masses within radii which enclose two different overdensities. Previous numerical simulation analyses have shown that at a given redshift the halo sparsity carries cosmological information encoded in the halo mass profile. Moreover, its ensemble-averaged value can be inferred from prior knowledge of the halo mass function at the overdensities of interest. Here, we present a detailed study of the ensemble average properties of the halo sparsity. In particular, using halo catalogues from high-resolution N-body simulations, we show that its ensemble average value can be estimated from the ratio of the averages of the inverse halo masses as well as the ratio of the averages of the halo masses at the overdensity of interests. This can be relevant for galaxy clusters data analyses. As an example, we have estimated the average sparsity properties of galaxy clusters from the LoCuSS and HIFLUGCS data sets, respectively. The results suggest that the expected consistency of the different average sparsity estimates can provide a test of the robustness of mass measurements in galaxy cluster samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call