Abstract

We evaluate the average-case performance of three approximation algorithms for online non-clairvoyant scheduling of parallel tasks with precedence constraints. We show that for a class of wide task graphs, when task sizes are uniformly distributed in the range [1₀C], the online non-clairvoyant scheduling algorithm LL-SIMPLE has an asymptotic average-case performance bound of M/(M-(3-(1 + 1/C)C+1)C-1), where M is the number of processors. For uniform probability distributions of task sizes, we present numerical and simulation data to demonstrate the accuracy of our general asymptotic average-case performance bound. We also report extensive experimental results on the average-case performance of online non-clairvoyant scheduling algorithms LL-GREEDY and LS. Algorithm LL-GREEDY has better performance than LL-SIMPLE using an improved algorithm to schedule independent tasks in the same level. Algorithm LS produces even better schedules due to a break of boundaries among levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.