Abstract

We evaluate the average-case performance of three approximation algorithms for online non-clairvoyant scheduling of parallel tasks with precedence constraints. We show that for a class of wide task graphs, when task sizes are uniformly distributed in the range [1..C], the online non-clairvoyant scheduling algorithm LL-SIMPLE has an asymptotic average-case performance bound of M/(M-(3-(1+1/C) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">C+1</sup> )C-1), where M is the number of processors. For arbitrary probability distributions of task sizes, we present numerical and simulation data to demonstrate the accuracy of our general asymptotic average-case performance bound. We also report extensive experimental results on the average-case performance of online non-clairvoyant scheduling algorithms LL-GREEDY and LS. Algorithm LL-GREEDY has better performance than LL-SIMPLE by using an improved algorithm to schedule independent tasks in the same level. Algorithm LS produces even better schedules due to break of boundaries among levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.