Abstract

A model of the average capacity of the ground-to-train wireless optical communication (WOC) link is established by using the gamma–gamma distribution of moderate to strong scintillation regions. Our numerical propagations indicate that the average channel capacity increases with the increase of refractive-index structure parameter and turbulence spectral index. For the link operating distance being larger than 100m, the influences of the change for the normalized beamwidth on the average channel capacity can be ignored. The higher the average SNR results, the higher is the equivalent average channel capacity. The point errors between the transmitter laser and receiver detector are dominant factor to decrease the average capacity of links.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.