Abstract

Autotoxicity in plants limits their growth and that of nearby plants of the same species, which has obvious implications in crop yield and quality. Silicon (Si) has been shown to increase plant tolerance to autotoxic stress. However, the physiological mechanisms underlying the effects of Si in alleviating autotoxicity during germination in cucumber (Cucumis sativus L.) are unknown. Cinnamic acid derivatives, such as 3-phenylpropionic acid (PA), are a class of autotoxins present in cucumber root exudates. Our objective was to investigate Si-induced autotoxic stress tolerance in cucumber seedlings by focusing on the effects of Si on the induction of antioxidant defense pathways. We found that PA treatment significantly reduced seed germination, radicle length, lateral root number, fresh weight, AsA and GSH contents, and the activities of SOD, CAT, and APX in cucumber seedlings, while it increased membrane permeability and levels of MDA, proline, O 2 - , and H2O2. Application of Si enhanced growth of PA-treated plants and significantly increased germination rate, radicle length, lateral root number, fresh weight, AsA and GSH levels, and SOD, CAT, POD, and APX activities. These results suggest that exogenous Si alleviates autotoxicity caused by PA during seed germination by increasing antioxidant enzyme activities and mitigating lipid peroxidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.