Abstract

The autothermal reforming (ATR) performance of diesel, biodiesel, diesel blended with 25% biodiesel, and diesel blended with both 25% biodiesel and 10% ethanol was investigated under different operating environments in a single-tube reformer with rhodium/zirconia wash-coated ceramic monoliths. A customized nozzle integrated with a microsize porous device was designed to finely atomize the input heavy hydrocarbon fuels and enhance the homogeneous mixtures of hydrocarbon fuel with steam and air. The optimum operating conditions with high syngas yields and carbon-free content for ATR of each studied fuel were identified, from both thermodynamic analysis and experimental measurements. After establishing the test points for the reformation of the studied fuels under the same initial operating environment [total O/C = 1.47, S/C = 0.6, and gas hourly space velocity at standard temperature and pressure (GHSV) = 34 120 h–1, at 950 °C reformer temperature] with the goal of achieving the same rate of syngas producti...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call