Abstract

Endogenous electric fields (EFs) have been confirmed to facilitate angiogenesis through guiding directional migration of endothelial cells (ECs), but the underlying mechanisms remain obscure. Recent studies suggest that the directed migration of ECs in angiogenesis is correlated with autophagy, and the latter of which could be augmented by EFs. We hypothesize that autophagy may participate in the EFs-guided migration of ECs during angiogenesis. Herein, we showed that EFs induced human umbilical vein endothelial cells (HUVEC) migration toward the cathode with enhanced autophagy. Genetic ablation of autophagy by silencing the autophagy-related gene (Atg) 5 abolished the EFs-directed migration of HUVEC, indicating that autophagy is definitely required for EFs-guided migration of cells. Mechanistically, we identified the intracellular reactive oxygen species (ROS) as a crucial mediator in EFs-triggered autophagy through augmenting the silencing information regulator 2 related enzyme1 (SIRT1)/forkhead box protein O1 (FOXO1) signaling. Either ROS scavenging or SIRT1 knockdown eliminated the EFs-triggered autophagy in HUVEC. Further study showed that SIRT1 promoted FOXO1 deacetylation, facilitating its nuclear accumulation and transcriptional activity, and thereby activating autophagy in EFs-treated HUVECs. In conclusion, our study demonstrated a pivotal role for autophagy in EFs-induced directed migration of HUVECs through the ROS/SIRT1/FOXO1 pathway, and provided a novel theoretical foundation for angiogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.