Abstract

AimsBronchopulmonary dysplasia (BPD) is a severe respiratory complication in preterm infants. This study reveals the molecular mechanism of autophagic agonists regulating the Nrf2-ARE pathway via p62 to improve alveolar development in BPD rats. Main methodsNewborn Sprague-Dawley rats were randomly exposed to a hyperoxic environment (FiO2 = 0.85) for 14 days and rapamycin (RAPA) was intraperitoneally injected on alternate days into hyperoxia-exposed mice. Alveolar development was assessed using HE and RAC values. Markers associated with the p62-Keap1-Nrf2-ARE pathway were detected by western blot, immunohistochemistry, and RT-PCR. Co-localization of proteins was determined using double immunofluorescence staining. Key findingsAt the levels of lung tissue and primary type II alveolar epithelial cells, the enhanced binding between phosphorylated p62 and Keap1 disrupted the nuclear transport of Nrf2. The activated Nrf2 was insufficient to reverse alveolar simplification. The autophagy agonist was able to inhibit p62 phosphorylation, promote Keap1 degradation, increase Nrf2 nuclear transport, augment downstream antioxidant enzyme expression, and enhance antioxidant capacity, thereby improving the simplification of alveolar structure in BPD rats. SignificanceThe use of autophagy agonists to enhance the Nrf2-ARE pathway activity and promote alveolar development could be a novel target in antioxidant therapy for BPD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.