Abstract
Wearable smart textile sensors for monitoring vital signs are fast, noninvasive, and highly desirable for personalized health management to diagnose health anomalies such as cardiovascular diseases and respiratory dysfunction. Traditional biosignal sensors, with power consumption issues, constrain the use of wearable medical devices. This study introduces an autonomous triboelectric smart textile sensor (AUTS) made of reduced graphene oxide/manganese dioxide/polydimethylsiloxane (RGO-M-PDMS) and polytetrafluoroethylene (TEFLON)-knitted silver electrode, offering promise for vital sign monitoring with self-powering, flexibility, and wearability. The sensor exhibits impressive output performance, with a sensitivity of 7.8 nA/kPa, response time of ≈40 ms, good stability of >15,000 cycles, stretchability of up to 40%, and machine washability of >20 washes. The AUTS has been integrated to the TriBreath respiratory belt for monitoring respiratory signals and pulse strap for pulse signals concurrently at different body pulse points. These sensors wirelessly transmitted the acquired biosignals to a smartphone, demonstrating the potential of a self-powered and real-time vital sign monitoring system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have