Abstract
Gliding robotic fish, which is a hybrid of underwater gliders and robotic fish, is energy efficient and highly maneuverable and holds strong promise for long-duration monitoring of underwater environments. In this paper, a novel scheme is proposed for autonomously sampling multiple water columns using gliding robotic fish. The scheme exploits energy-efficient spiral-down motion to sample each water column, followed by sagittal-plane glide-up toward the direction of the next water column. Once surfacing, the robot uses Global Positioning System guidance to reach the next column location through swimming. To enhance the path-tracking performance, a two-degree-of-freedom controller involving $H_\infty$ control is used in the spiral motion, and a sliding-mode controller is employed to regulate the yaw angle during glide-up. The sampling scheme has been implemented on a gliding robotic fish prototype, “Grace,” and verified first in pool experiments and then in field experiments involving the sampling of harmful algae concentration in the Wintergreen Lake, Michigan.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have