Abstract

AbstractSoiling can greatly reduce both the efficiency of photovoltaic (PV) installations and the signals of radiometers. The knowledge of the current soiling losses of a PV installation can be used to optimize the cleaning schedule and to avoid false alarms related to other issues that might cause underperformance. Underperformance can be detected by comparing measured to modeled PV production derived using pyranometer or reference cell measurements. Soiled pyranometers or reference cells lead to too low modeled PV production so that PV soiling or other errors might not be detected. So far, soiling sensors either require frequent cleaning or they use indirect measurements to derive the soiling loss (e.g., analysis of backscattering signal or imaging of dust on a glass surface). Currently, the soiling loss of pyranometers or outdoor reference cells uses the comparison to another frequently cleaned device of the same model. To avoid time‐consuming maintenance of the sensors and to avoid additional sensors as much as possible, we developed a new method for measuring PV and radiometer soiling losses. The method makes use of a characterized lamp that is protected from soiling by a collimator and that illuminates the pyranometer or reference cell each night for some time. Comparing the signals of one night to the signal obtained at a night shortly after the last cleaning of the sensor, its soiling loss can be derived. To validate the measurements of soiling losses for the pyranometer and the reference cell, the soiling losses of the devices are also derived by comparing their signals to those of a clean sensor of the same type. These reference instruments are calibrated relative to the test devices so that deviations indicate the soiling loss of the test sensors. The first outdoor tests with 4 months of data show a good agreement with the reference measurements of the soiling losses. The accuracy of the method is estimated to be similar to that of the reference method, which involves the daily cleaning of the reference devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.