Abstract
Unmanned Aerial Vehicles are useful tools for many applications. However, autonomous path planning for Unmanned Aerial Vehicles in unfamiliar environments is a challenging problem when facing a series of problems such as poor consistency, high influence by the native controller of the Unmanned Aerial Vehicles. In this paper, we investigate reinforcement learning-based autonomous local path planning methods for Unmanned Aerial Vehicles with high autonomous decision-making capability and locally high portability. We propose an autonomous local path planning algorithm based on the TD3 strategy to solve the problem of local obstacle avoidance and path planning in unfamiliar environments using autonomous decision-making of Unmanned Aerial Vehicles. The simulation results on Gazebo show that our method can effectively realize the autonomous local path planning task for Unmanned Aerial Vehicles, the success rate of path planning with our method can reach 93% under the interference of no obstacles, and 92% in the environment with obstacles. Finally, our method can be used for autonomous path planning of Unmanned Aerial Vehicles in unfamiliar environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.