Abstract
This paper investigates the challenging problem of the autonomous landing of a quadrotor on a moving platform in a non-cooperative environment. The limited sensing ability of quadrotors often hampers their utilization for autonomous landing, especially in GPS-denied areas. The performance of motion capture systems (MCSs) in many application areas is the motivation to utilize them for the autonomous take-off and landing of the quadrotor in this research. An autonomous closed-loop vision-based navigation, tracking, and control system is proposed for quadrotors to perform landing based upon Model Predictive Control (MPC) by utilizing multi-objective functions. The entire process is posed as a constrained tracking problem to minimize energy consumption and ensure smooth maneuvers. The proposed approach is fully autonomous from take-off to landing; whereas, the movements of the landing platform are pre-defined but still unknown to the quadrotor. The landing performance of the quadrotor is tested and evaluated for three different movement patterns: static, square-shaped, and circular-shaped. Through experimental results, the pose error between the quadrotor and the platform is measured and found to be less than 30 cm.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.