Abstract

Developing methods for autonomous landing of an unmanned aerial vehicle (UAV) on a mobile platform has been an active area of research over the past decade, as it offers an attractive solution for cases where rapid deployment and recovery of a fleet of UAVs, continuous flight tasks, extended operational ranges, and mobile recharging stations are desired. In this work, we present a new autonomous landing method that can be implemented on micro UAVs that require high-bandwidth feedback control loops for safe landing under various uncertainties and wind disturbances. We present our system architecture, including dynamic modeling of the UAV with a gimbaled camera, implementation of a Kalman filter for optimal localization of the mobile platform, and development of model predictive control (MPC), for guidance of UAVs. We demonstrate autonomous landing with an error of less than 37 cm from the center of a mobile platform traveling at a speed of up to 12 m/s under the condition of noisy measurements and wind disturbances.

Highlights

  • Over the last few decades, unmanned aerial vehicles (UAVs) have had significant development in many aspects, including fixed-wing designs, hovering multi-copters, sensor technology, real-time algorithms for stabilization and control, autonomous waypoint navigation

  • We present a complete system architecture enabling a commercially available micro-scale quadrotor UAV to land autonomously on a high-speed mobile landing platform under various wind disturbances

  • We have developed an efficient control method that can be implemented on an embedded system at low cost, power, and weight

Read more

Summary

Introduction

Over the last few decades, unmanned aerial vehicles (UAVs) have had significant development in many aspects, including fixed-wing designs, hovering multi-copters, sensor technology, real-time algorithms for stabilization and control, autonomous waypoint navigation. Most MAVs currently in use usually employ a rechargeable lithium polymer (LiPo) battery that can provide a higher energy density than other battery types, but they still have a very limited flight endurance of about 10–30 min at best. To overcome these issues, a number of solutions have been proposed, including integration of a tether for power and data transmission [1], autonomous deployment and recovery from a charging station [2], solar-powered photovoltaic (PV) panels [3], and development of batteries with high-power density. The solar panel methods are attractive for relatively large fixed-wing UAVs, but they are not quite suitable for most rotary-wing UAVs

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call