Abstract

Robots will become ubiquitously useful only when they can use few attempts to teach themselves to perform different tasks, even with complex bodies and in dynamical environments. Vertebrates, in fact, use sparse trial-and-error to learn multiple tasks despite their intricate tendon-driven anatomies—which are particularly hard to control because they are simultaneously nonlinear, under-determined, and over-determined. We demonstrate—for the first time in simulation and hardware—how a model-free, open-loop approach allows few-shot autonomous learning to produce effective movements in a 3-tendon 2-joint limb. We use a short period of motor babbling (to create an initial inverse map) followed by building functional habits by reinforcing high-reward behavior and refinements of the inverse map in a movement’s neighborhood. This biologically-plausible algorithm, which we call G2P (General-to-Particular), can potentially enable quick, robust and versatile adaptation in robots as well as shed light on the foundations of the enviable functional versatility of organisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call