Abstract

Deep-learning models that learn a sense of language on DNA have achieved a high level of performance on genome biological tasks. Genome sequences follow rules similar to natural language but are distinct in the absence of a concept of words. We established byte-pair encoding on the human genome and trained a foundation language model called GROVER (Genome Rules Obtained Via Extracted Representations) with the vocabulary selected via a custom task, next-k-mer prediction. The defined dictionary of tokens in the human genome carries best the information content for GROVER. Analysing learned representations, we observed that trained token embeddings primarily encode information related to frequency, sequence content and length. Some tokens are primarily localized in repeats, whereas the majority widely distribute over the genome. GROVER also learns context and lexical ambiguity. Average trained embeddings of genomic regions relate to functional genomics annotation and thus indicate learning of these structures purely from the contextual relationships of tokens. This highlights the extent of information content encoded by the sequence that can be grasped by GROVER. On fine-tuning tasks addressing genome biology with questions of genome element identification and protein–DNA binding, GROVER exceeds other models’ performance. GROVER learns sequence context, a sense for structure and language rules. Extracting this knowledge can be used to compose a grammar book for the code of life.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.