Abstract

The ability to fly at low altitude while actively avoiding collisions with the terrain and objects such as trees and buildings is a great challenge for small unmanned aircraft. This paper builds on top of a control strategy called optiPilot whereby a series of optic-flow detectors pointed at divergent viewing directions around the aircraft main axis are linearly combined into roll and pitch commands using two sets of weights. This control strategy already proved successful at controlling flight and avoiding collisions in reactive navigation experiments. This paper describes how optiPilot can efficiently steer a flying platform during the critical phases of hand-launched take off and landing. It then shows how optiPilot can be coupled with a GPS in order to provide goal-directed, nap-of-the-earth flight control in presence of obstacles. Two fully autonomous flights of 25 minutes each are described where a 400-gram unmanned aircraft flies at approx. 10 m above ground in a circular path including two copses of trees requiring efficient collision avoidance actions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.