Abstract

We examine autonomous optical excitation transfer in mixtures of different-sized quantum dots networked via optical near-fields at the nanometer scale. We theoretically and experimentally demonstrate optical excitation transfer via the network of optical near-field interactions among quantum dots. The topology-dependent efficiency of excitation transfer is also investigated. The results of our analysis of autonomous and energy-efficient light-matter interactions at the nanoscale, called nanophotonics, will provide useful insights into the design of robust and energy-efficient information and communications systems and networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.