Abstract

A model of an autonomous three-sphere microswimmer is proposed by implementing a coupling effect between the two natural lengths of an elastic microswimmer. Such a coupling mechanism is motivated by the previous models for synchronization phenomena in coupled oscillator systems. We numerically show that a microswimmer can acquire a nonzero steady state velocity and a finite phase difference between the oscillations in the natural lengths. These velocity and phase differences are almost independent of the initial phase difference. There is a finite range of the coupling parameter for which a microswimmer can have an autonomous directed motion. The stability of the phase difference is investigated both numerically and analytically in order to determine its bifurcation structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call